THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5220 Complex Analysis and its Applications 2016-2017 Suggested Solution to Assignment 5

1 Given that $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence R around z_0 . We want to show that

$$f^{(n)}(z) = \sum_{k=0}^{\infty} \frac{(n+k)!}{k!} a_{n+k} (z-z_0)^k \text{ for } n = 0, 1, 2, \dots$$

For n = 0, the statement is trivial. Assume that the statement is true for n = m. For n = m + 1, by assumption we have

$$f^{(m)}(z) = \sum_{k=0}^{\infty} \frac{(m+k)!}{k!} a_{m+k} (z-z_0)^k$$

Differentiate both sides with respect to z, we have

$$f^{(m+1)}(z) = \sum_{k=0}^{\infty} \frac{(m+k)!}{k!} (k) a_{m+k} (z-z_0)^{k-1}$$
$$= \sum_{k=1}^{\infty} \frac{(m+k)!}{(k-1)!} a_{m+k} (z-z_0)^{k-1}$$
$$= \sum_{k=0}^{\infty} \frac{(m+1+k)!}{k!} a_{m+1+k} (z-z_0)^k$$

Hence the statement is true for n = m + 1. By M.I., the statement is true for n = 0, 1, 2, ...

2 Note that for 0 < |z| < 1,

$$\begin{aligned} \frac{e^z}{z(z^2+1)} &= \left(\frac{1}{z}\right)(e^z)\left(\frac{1}{1-(-z^2)}\right) \\ &= \left(\frac{1}{z}\right)(1+z+\frac{z^2}{2}+\frac{z^3}{6}+\dots)\left(1-z^2+z^4-z^6+\dots\right) \\ &= \frac{1}{z}\left((1)(1)+(z)(1)+\left(\frac{z^2}{2}(1)+(1)(-z^2)\right)+\left(\frac{z^3}{6}(1)+(z)(-z^2)\right)+\dots\right) \\ &= \frac{1}{z}+1-\frac{1}{2}z-\frac{5}{6}z^2+\dots\end{aligned}$$

- 3 Given $f(z) = 1 \cos z$. Since we have $f(0) = 1 \cos 0 = 0$, $f'(0) = \sin(0) = 0$ and $f''(0) = \cos(0) = 1 \neq 0$, f has a zero of order 2 at z = 0.
- 4 Since f(z) has a zero at z_1 of order m_1 , we know that there exists an analytic function $g_1(z)$ on D such that

$$f(z) = (z - z_1)^{m_1} g_1(z)$$
 and $g_1(z_1) \neq 0$

Now since $f(z_2) = 0$ and $f(z) = (z - z_1)^{m_1} g_1(z)$, we must have $g_1(z_2) = 0$ and z_2 is a zero of $g_1(z)$ of order m_2 . So there exists another analytic function $g_2(z)$ on D such that

$$g_1(z) = (z - z_2)^{m_2} g_2(z)$$
 and $g_2(z_2) \neq 0$

By repeating the arguments several times and substituting the functions into f(z), we can find an analytic function $g(z) = g_n(z)$ such that

$$f(z) = (z - z_1)^{m_1} (z - z_2)^{m_2} \dots (z - z_n)^{m_n} g(z)$$

5 Since f(z) is entire, it has a Talyor's series expansion $f(z) = \sum_{k=0}^{\infty} b_k z^k$. By assumption, for any real

number x, we have $f(x) = \sum_{k=0}^{\infty} a_k x^k$. In particular, this power series converges for any $x \in \mathbb{R}$. Now define another function $g(z) = \sum_{k=0}^{\infty} a_k z^k$. Since f(x) is a convergent power series for any $x \in \mathbb{R}$, g(z) is an entire function. Note that f(z) and g(z) are both entire and (f - g)(x) = 0 for any $x \in \mathbb{R}$. That means the zeros of the entire function (f - g) are not isolated. Hence we have f(z) = g(z) for all $z \in \mathbb{C}$.

- 6 (a) See Q.7 in the suggested solution for assignment 2.
 - (b) (\Longrightarrow) By a) and the assumption, we have $g(z) = \overline{f(\overline{z})} = f(z)$ for any $z \in D$. In particular, we have

$$f(\overline{x}) = f(x) = f(x)$$
 for any $x \in (a, b)$

This shows that $f(x) \in \mathbb{R}$.

(\Leftarrow) Suppose $f(x) \in \mathbb{R}$ for any $x \in (a, b)$. Then $g(x) = \overline{f(\overline{x})} = \overline{f(x)} = f(x)$ for any $x \in (a, b)$. This implies f(z) = g(z) for all $z \in D$ by uniqueness of analytic function.